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NON-L:NEAR BEHA_IO_ OF

FIBSR COMPOSITE L%MINATES

by Zvi _ashi_,_ Debal Bagchi and B. Walter Rosen

Materials Sciences Corporation

SUMMARY

The non-linear stress-strain behavior of fiber composite

laminates has been analyze/ t_ define the relationship between

laminate behavior and the non-linear stress-strain characteris-

ti:s of unidirectional co_osites. The resulting analysis has

been programmed to yield an efficient computerized design and

analysis tool.

The approach utilized herein was to adopt a _amberg-

Osgood representation of the non-linear stress-strain behavior

and to utilize deformation theory as an adequate representation

of the material nonlinearities. The problem was viewed on two

levels. First, the relationship between the constituent proper-

ties and the stress-strain response of a unidirectional fiber

composite material was studied. For this problem, the primary

attention was directed toward axial shear behavior, and an _x-

pression was establlsbed relating the composite average-stress/

average-strain curve to _he fiber moduli an_ the matrix non-

Iznear stress-strain curve. Second level of approach is to treat

the interelationship between the properties of the unidirectional

layers and those of _he laminate. For this case, the starting

point is a non-linear stress-straln curve for transverse

stress and for axial shear and a linear stress-strain relation

for stress in the fiber direction. The ,on-linear lamina

stress-strain curves can be modeled by proper selection of the

Ramberg-Osgood para_ters. In the presen_ study, with this as a

starting point, an interaction expression was formulated to ac-

count for simultaneous application of axial shear and transverse

stress.

A laminate having an arbitrary number of oriented layers

and subjected to a general state of membrane stress was treated.

Parametric results and comparison with experimental data and

prior theoretical results are presented.

'"' I I i I II I I li I



i. I_TRODUCTION

A basic requirement for the engineer dasigning xith fiber

composite materials is a definition of the stiffness and strength

of these materials under a variety of loading conditions, includ-

ing cases for which experimental _aterials properties data are

not available. For this purpose, it is necessary that he have at

his disposal reasonably accurate procedures to predict these

mechanical properties. Existing analyse_ can predict the elas-

tic behavior of a l_inated composite quite well when the elas-

tic properties of the unidirectional materials from which it

is made are known. However, the situation has been much rare

complicated and much less satisfactory with regard to the in-

elastic stiffness and strength of a laminate. The present pro-

gram was undertaken to develop a computerized analysis of the

inelastic behavior of fiber com uosite laminates which could be

used as a design tool. The results Of this study and compari-

sons of these results with experimental data are presented in

this r_port.

It is essential to recognize that the utilization of fiber

composite materails in structural design involves the incor-

poration of material design into the structural design process.

This is illustrated clearly by the fact that the gross mate-

rial properties of a fiber composite laminate change when any

change is made in the laminate ply orientations. Even when

the designer considers a _aterial for_d from a particular com-

bination of fiber and matrix _terials, there remains a large

number of geometric variables associated with the laminate de-

sign. Thus, in the preliminary design phase, experimental mate-

rial properties data will generally be too limited. In the

case of elastic properties, sufficient capability to synthesize

the necessary properties exists. This procedure gen_rally starts

with the definition of the elastic properties of unidirectional

fiber composite materials. These can, of course, be determined

experimentally. Also, when such data are no_ available, they

can be estimated using a variety of analytical techniques. These

2.
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1after are generally referred to a_ microv_chanic_ analys_s.

_or cxa_.ple, a set of relatively simple relations for predict-

ing the moduli of unidirectional reinforced com.posltes are

presented in [I]. Alternate _icromechanics approaches are

described in [2} to [4]. A review of these methods is pre-

sented in [5]. With these properties available, it is assu_ed

that the individual laminae are homogeneous and anisotropic.

A laminate analysis is carried out in a straight fo_ard

fashion following me_hods originally developed for such matE-

rials as plywood, and rx_re recently extended to the more

general cases associated with fiber composite laminates {e.g.,

[6! to [8}).

However, contemporary fiber composite .materials -_-_=_"_.._.,..j

consist of elastic brittle fibers such as glass, boron or

graphite in relatively sof_ matrix materials such as epoxy or

aluminum. For these matrix materials it is reasonable to an-

ticipate that at a certain loading state the matrix will begin

to exhibit inelastic effects. This results in non-linear re-

lations between structural loads and deformations. These in-

elastic effects can, _f course, be expected to have a signifi-

cant effect upon failure of the laminate. It is quite clear

that adequate definition of these failure conditions are

essential _o achieve structural designs of high reliability.

In _ne present study, a non-linear laminate analysis has

been developed which can provide realistic assessments of the

stresses and strains in the various laminae and of the inelas-

tic stiffneases of the laminate at any stress level. This in-

formation ca_ be used for assessment of such effects as struc-

tural stability or structural stress distributions. The stress

distributions in the laminae and the laminates can also be

utilized for the development of more realistic failure criteria.

Inelastic matrix behavior can be classified broadly as

either time deperdent or time independent. Time dependent be-

havior is callec :coelastic if linear and c:eep if non-linear.

Poly_ric matrices _ch as epoxy do exhibit such behavior. In

3.

!



the case of metallic matrix materials, s_eh a_ a,_,_,., t_.._e

dependent effects are generally negligible unless elevated

temperature conditions are considered. The present study is

concerned with time independent non-linear matrix behavior

which is of significance for both polymeric and metallic _atri-

ces. Throughout this paper the expression "inelastic" is use_

to describe this tl_e independent _chanical behavior. The

._e_hod of approach tc these problems is similar to that cf _he

elaszic analysis. Yhus, _t is necessary to determine, first,

the inelastic properties _._ _he unidirectional f_ber compesite

materials. This can _e done experimentally or by micromecnan-

ics methods. Given this inforF_ation, a m_thod to determine

stresses and strains in an Znelastic laminate is then devimed.

The problem is complicated by the fact that the inelastic

stress-strain relations are non-linear.

A limited muter of pertinent investigations can be found

in the literature. Hill [4] considered, in aDproximate

fashion, a limited aspect of inelastic behaxaor of a uniaxially

reinforced material: the case of stress in fiber direction

co_ined with isotropic transverse stress. Petit and Waddoups

[6] devised an incremental method for laminate analysis in

which it was assu/_ed that in single laminae there is no inter-

action of stress components in different directions as far as

lamina deformation is concerned. This assumption is restric-

tive, and also their incre_ntal laminate analysis scheme is

unduly complicated. Adar_ [7_ used a finite element technique

for numerical analysis of unidirectional materials in _he form

of periodic fiber arrays _nder conditions of plane strain.

Huang 18] gave an approxi_ate analysis for transverse inelas-

tic behavior for a unidirectional _aterial in plane strain,

but it is diffucult to assess the validity of the approxima-

tions introduced.

A detailed analysis of the ine|astic laminate problem

has been given by Foye and Baker [9]. Using finite element

m_thods, they computed the inelastic effective propertie3 of

unidirecuional rectanc_lar and square arrays of elastic fibers

4.



in inelastic matrix. _hese properties were _hen _&ed i,_ _A

inelastic laminate analysis. The analysis is based on

incremental plasticity theory and is, _fortunately, very

complicated and requires a great deal uf computer time. The

results obtained are, however, of great importance for com-

parison with results predicted by more simplified theories,

such as the one which will be given in the present work.

The body of _his report is divided into four _ajor see-

tion_. In the first, consideration is given to th_ behavior

of unidirectional fiber composite materials. This requires:

a definition of the appropriate form of the inelastic stress-

strain relations; some consideration of _he relationship be-

tween composite properties and constituent properties; and a

definition of the appropriate form of the interaction between

various stress components. The basic objective in uhis phase

of the report was to define appropriate constitutive relations

for the individual lamina which can be used in the non-linear

laminate analysis. Further, there is a desire to gain some

insight into the influence of the particular constituent

properties upon the lamina stress-strain relations. In this

phase of the study, it is found useful to characterize the

unidirectional material with the aid of Ra_berg-Osgood suress-

strain :elations.

In the next section of the report, the analysis of the

inelastic behavior of laminates is described. Here, a pro-

cedure for incorporating the non-linear constitutive relations

into an analysis which defines _he state of stress in the in-

dividual laminae under an arbitrary set of external loads,

is defined. Analyses are developed for the case of symetric

laminates subjecte_ to membrane loadinq. Yhe equations which

are developed uniquely define the desired laminate internal

average stress distribution under a given set of membrane loads.

Governing equations, however, are non-linear and require numeri-

cal solution procedures. An efficient algorithm has been de-

fined which enables computer solution to be achieved for arbitrary

5.

I I



lamlnates at minimal cost. The solution is obtained by appli-

catzon of _he Newton-Raphson meLhod.

in the final section, the computerized analysis which has

been de,_loped is applied to series of problems. The first

group presents com@arisons with'various _nalytical results from

t_e more complex analyses of Ref. [6_ and [9]. The second group

of numerical results presents comparisons between theoretical

results from the present model and available experimental data.

The third group of results provides several parametric studies

to gain insight into those factors which contribute signifi-

can£1y to the non-linear behavior of fiber composite laminates.

Also, computations have been made to provide a preliminary

assessment of combined load effects ihClUdxng comparisons with

limited experimental data.

Details of the various analytical developements, as well

as descriptions of the computer program, are presented in

appendices to the report.

The principal result of the present program is a computer

program which provides a simple engineering tool which can be

used for the parametric study of the lnfl_ence of _teriai prop-

erties upon laminate performance, This laminate analysis capa-

bility can be used by the structural designer to define design

allowable stresses and to aid in the selection of fiber com-

posite materials for structural applications. A comp_rlson of

the present results with the limited amount of available experi-

mental data shows good agreement. There are, however certain

cases in which the agreement is not good, par tieularly as the

laminate loading approache_ failuxe. The results of the present

ax%alytical method agree well with the results for _hose prob-

lems for which _re exact and more complex analytical results

exist.

6.



1 NON-LINEAR STRESS-STRAIN RELATIONS OF U_IAXIAL

FIB_ REINFORCED _ATERIALS

2.1 General Form of Stress-Strain Relations

An. effective stress-strain relation of a composite mate-

rial is defined as a relation between average stress _ and
x3

average strain 3. Here and in %he following latin indices

range over i, 2, and 3. If the composite is elastic the

general effective strass-strain rc!atien tmkes the form

= C*
vij ijkl £_i (2.1.1)

where C_kl are Lhe effective elastic moduli which are _aterial

constants and are thus independent of stress or strain. :hus,

[2.1.1) is a linear relation between average stress and strain.

If the composite is s'abject to symmetries the form of

{2.1.i) simplifies. For a uniaxial FR_: the most i_@ortant

cases of symmetry are transverse isotropy, around fiber direc-

tion, and square array [square sy_J_try). In these cases the

stress-strain relations (2.1.1 _ for transverse isotropy _ce,-_

the form:

F,: = C',, _L + C*_2 F22 + C*,_ F_,

r = C* ? + C*. V + C* r

3_ = 12 ; 3 21

(2.1.2)

c:3 - 2C*ss _2:

and

(2.1.3)

C's,= (C'22-C'2_)/2

In (2 i 2-3) I indicates A__, _,_ 9, % ,_,_,,%_ a_-

tions transverse =o i.

In _he event of inelastic matrix and ela_tlc flber_, _

situation is much r.ore co._Dlicated since the stress-s-.rain

7.

,,m s, I I I I



relation are nonlinearity and history dependent. In no case is

stress proportional to strain so that superposition of effects

is not valid, and in order to determine current strain it is

not sufficient %o know current stress but it is necessary to

know precisely the variation of stress which preceded its cur-

rent value, fhus, for a material in a kr_own state of conbined

shear and uniaxial tension, the state of strain is different

if: (a) tension is first applied and then the shear, (b) shear

is first applied and then the tension- (c) tension and shear

are applied simultaneously. For this reason stress-strain re-

lations must be presented in incremental form. That is, strain

increment is related to stress ani s_res_: increment. This com-

plicates matters enormously. However, Jt is known that in

the case of proportional loading, that ii_, all stresses at a

point grow simultaneously in s fixed ratio to one another,

_ncremenual theory can be integrated into the much simpler

total or deformation theory for which current strain is com-

pletely determined by current stress.

Deformation theories have a wider range of validity _han

proportional loading. Comparison of n'_rous detailed solutions

carried out both incre._entally and by much si_ler deformation

_heory show surprising agreer_n: in _any cases, and Budiansky

[i0_ has shown that defor_._tion theory can also be valid for

"neighboring" loading paths.

In the presen_ work, we are concerned with composites

which are subjected to some external load. If _t is supposed

that the various external loa_ components grow proportionally,

this does not necessarily imply that the components of stress

_t _ typical in_rnal point also grow proportionally. It is,

however, felt that the manner of growth of these internal

s_ress co.=_o_ents cannot deviate severely from proportional

loading if external loading is proportional. Consequently,

deformation type stress-strain relations are assumed for the

matrix.

Thls assu_.ption results in considerable simplification.

It will be seen that it yields results which are extre.,_e!y

8.
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close to the ones obtained in [9] on the basis of :he much

more complicated incremental :heory.

It _s s_0wn in Appendix A that for elastic flbers and

an _ne!astic matrix described by deformation type theory, the

effective str_ss-straln relations for a transversely isotropic

or square syr_ntric F_i are:

_{_ = $ _ _,:. - S_ ; _; + Sz2 _ : (2.1.4)

?: : = 2S _ --

_":_ = 2S__ T,3

and

Ss_ = (Sz ;-S_ 3)/2 (2.1.5)

The coofficients S11' 512" etc. are the effective inelas-

tic compliances of the material and are functions of the aver-

_esses, or rather of certain invariants of the averag_

stress tensor.

We are here primarily concerned with thin un:axta!!y _

inforced l_inae which are in a state of plane stress. Let

x I denote fiber direction, x 2 direction transverse to fibers

in lamina plane, and x 3 direction perpendicular to lamina,

Figure i. Then the plane stress condition is expressed by:

_,_ = 323 = ?_ = 0

Equs. _._.'"' 4) then assume the form:

q22 = _|2 _i 4 $22 '-22

(2.1.6)

(2.1.7)

9o
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Note that _.. does not vanish. It is however of no interest

for present purposes,

The ine:aseic ,:cmpliances In (2.1.7) arc functic s of

the stresses "li' "22, "12"

It is c_nvenient =o split the strains in (2.1.7) into

elasti= strains _ and inelastic strains e Thus:
_' a_"

where _ - ...,e.e and in the following gre&k =- _-_ .... __

The elastic strains are recovered after unloading of the com-

posite and are rela_ed to the stresses by elastic stress-strain

relations. Thus:

_ _ v I .

_ _ 0 ! --

_ ! t _

(2.1.9)

where ._
' ; ' A

SI I - S_ = - --
E.e_ EA

, (2.1,1_)
' I i

YO_.,_ S modulus in _=_ iirection,Here E A is :he effective .... ' .....

VA- the associated effective Poisson's ration, E_ - the effec-

tive Young's modulus transverse to fibers and G A - axial effec-

tive shear _)dulus, related to i-2 shear.

The inelastic, per_.anent, strains then have the forth..:

_'" '.. = Sl ;1; "_" S 2. _22

_22 --- S12 11 4" S22. "522 (2.!.13;

--

whe re

(2.1.i2)

!0.
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In order to further simplify the stress-strain relations

(2.1.11-.12), some specific features of ,_P_M %'ili be taken into

account. In such naterials, the riders are by an order of mag-

nitude s:iffer ".hat the matrix (for the case of boron an_/ur

graphite fiber in an epoxy matrix the raLio of fiber to matrix

Young's Dwgdulus can De in excess of i00). The sti_fnes3 ratio

beco._e_ larger in the inelastic range since the r.at£ix loses

stiffness (i.e., flows) while the fibers retain their stiffness.

In is, theref( re, clear that the stress "_iI in fiber direction

ks practically carried by _hu fibers alone with insigni=icant

matrix contribution.

Oa the other hand, the transverse stress :22 and the shear

stress _12 are primarily carried by the .-Latrix with little

fiber contribution.

it follows _hat inelastic behavior of the .PR,M is produced

primarily by _22 and _12 while inelastic behavior for _ll load

can be neglected.

The foregoing con_nen__s are sum._arized i_to two basic

assumptions :

(a) the inelastic strains _ z2 and _12 _re not __.._

of _I!

(b) the inelastic s_rain _ii always vanishes.

On the basis of these assumptions, the s-_ress-straln re-

lations (2.1.11-.12) simplify to:

--w _e I -- I

ezz -Szz (C_, _ z,_ ca:

(Z./.13)

iZ.



2.2 Plane Stress-Strain _i._+_-_ 4, D___=_,_ _

A convenient re gresentatiom o-_ hen-linear one dimensional

o_+e=,-,_:__rain relations has been giv__n by _a_berg an_ Dszood

[11!. For uniaxial stress, for example:

E1 _-r, : (2 2 i,
$ " .

where .,,_represents the _-__=st+c_ "_o_;:c..... _"_ ....._ ,_ _,, +'

and m are three para.,_eters to be obtainci by carve fitting. The

parameter c' is sometimes called nomin_l yield stress. Equa-

tion _2.2.1_ represents a family of curves with initial slope

r and monotonically decreasing slope with increasing c. The-lw

curvc=_ flatten out with increasing rn (Fig. 2). Without loss

of generality (2.2.1) can be written in the form:

--_ [l + (c--T)m-l"
_? , (2.2.2)

Y

which _,'ill be used from now on. Sim_lari'/, a stress-strain

curve in sl_ear can be represented in th __ form:

T

Y = Gq r, zl ,n-i (2 _ 3),+ + "--T' ] ....

Y

where G. is the elastic _:ear ._wDdul_s.

Zt should be emphasized that (2,2.2-.3) are valid only for

one dimensional cases. The question of the generalization to

general states of stress and strain has no unique answer. One

co.m._.on used form is iso_ropic J2 deformation theory [12].

::ext, we consider the case of effective or macroscopic

stress-strain relations for the special case of a uniaxially

reinforced material in which the matrix in non-linear, with

stress-strain relations in Ramberg-Osgood form.

Consider, for example, the case of uniaxial average stress

_22 in direct.ion transverse to fibers, all other average stresses

vanish. It then follows from (2.1.73 that:

¢:_ = £._,, (?:_) _,: (2.2.4)

12.
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_imilarly, if the only nonvanishing average stress is _12'

the shear stress-strain relation o_ the co.T4_osite is:

(2.2.5}

Evidently the inelastic effective compliances $22 ....

$44 are functions of the parameters of the inelastic Re,berg o

Csgood stress-strain relations of the matrix, of the elastic

properties of the fibers an1 of the internal geometry of the

composite. Actual prediction is a very difficult problen. Such

problems will be cnsidered in liD.ited fashion in the next para-

graph.

Just as matrix stress-strain relations arc represented in

Ramber_-Osgood form, _he same type of curve fitting can also

be applied for the effective stress-strain relation of the

composite. Thus (2.2.2-.3) are written in the form:

r _z: M-I_22

[._ = -- [I + :7--) ] (a)
-_ B T "y

- = _ - N-I
_,_ i [i + C"I=) ] (b}
• 2C A ly

(2.2.6)

Where E T is the effective transverse elastic Young's mod&ius

G A - effective axial elastic shear _dulus and cy, Zy, M and

H are cur_'e fitting _arameters which are in general quite

different from the corresponding Ra=_erg-Osgood matrix para-

meters.

A question of fundamental a_d of practical importance is

the form of the stress-strain relations for the case of plane

stress, takin_ into account interaction among the various stress

components, ir should be noted in this repsect that (2.2.6)

are special stress-strain relations when D22 or _12 act only

by themselves.

I_ i_ recalled that equations (2.1.13) represent the

inelastic parts of the strains for plane stress-strain re-

lations for F}_M with stiff fibers. It is sh_n in Appendix B

13.
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that the Ra.n%berg-Osgeod form of such plane stress-strain re-

ia-.ions is as follows:

_t s

,, -- _ (o__u.,' 2 ] 2.-.,_ ,( )2 + _.,
_22 = E_. y . (2.2.7)

e12 = _ [( ) _ ( ) ] -T-

2G A Y

The para,neters E T, G A, 2y, Xy, M, N in (2.2.7) are those of

the one dimen_:ional stress-strain relations (2.2.6) which may

be regarded as experi_entally (or perhaps theoretically) known.

The -nelastic parts of the strains are given by (2.1.9-

•i0}, and the total strains are then given by adding equations

_2.2.7_ and (2.1.9).

£quations (2.2.7) have been cor.,pared with cor_puted numeri-

cal resu].ts qiven in [9_. Reasonable agreement was obtained.

Comparisons for the intera:tion cases of transverse stress, 722,

versus transverse strain, [22' in the presence of axial shear

stress, _12' and dxial shear stress, _12' versus axial shear

strain, ¥12' are shown in Fig ares 3 and 4 respectively {in both

cases _22/_12 = 8/3). It is seen that the agreement is fair

for ".ransverse stress-strain relations (Fig. 3) at4 very. good

for t_he shear stress-strain relations (Fig. 4}.

}'i_urcs 3 and 4 also show the stress-strain relations ob-

tained from w qs. (2.2.7) for one dinensional transverse tension

o22, and axial shear, _2" respectively.

14.
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2 3 Axial shear Stress-Strain =_'_--

This paragraph is concerned wi_h the problem of preliction

of a one dimensional effective axial shear stress-strain re-

lation of a uniaxial FRM in ter_s of matrix and fiber properties

and the internal geometry of the composite.

The _in reason for concentratin_ on the axial shear prob-

lem is that the inelastic effect is predominant in axial shear

for which s_gnificant nonlinearity of the stress-strain response

is obtained (e.g., Figure 4). The effect An fiber direction is

practically non-existent as has indeed been assumed above, and

is relatively small ia transverse stre_s which is shown by the

s_ll curvature of the stress-strain relation in this case

(e.g., Figure 3).

On the basis of all this, it can indeed be assumed as

first approximation that the nonlinearity of the uniaxial F_M

is limited to axial shear alone.

Consider a uniaxially reinforced lamina which is subj_cte_

to pure axial shear, Figure 5, on its surface. The boundary

conditions are:

x 3 = + t/2

X2 = + b__

Xl =* a_

c_,_ -- 032 = 0:5 = 0

_}2 0 -22 =I C'?:_

(2.3.1)

it mmy be shown that under SUCh load the only nonvanishing

average stress in the cor_osite is:

(2.3.2)

_iz = To

It would seem at first tha'., given the _u.,_-e^_x-^_"°:"" of "'--_,,_in-

ter._al geometry of the composite, the state of stress at any

interior matrix or fiber point is generally three dimensional.

Surprisinqly enough, h(_wever, this is not so and the only non-

vanishing stress components in the interior of the composites

15.
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are the shear stresses J12 and el3, which are moreover tune-

• _ s _r_ss
tions of x 2 and x 3 only. Thus the interior state o _ _

is:

_:a = _:_ (x 2, x_',

(2.3.3)

The validizy of equations (2.3.3) for the case of an elastic

co35oosite has bee_ proved in [5]. Their validity for the pre-

sent much more -_enera: inelastic case will "be shown elsewhere.

The effective stress-strain relation of the comi,osite in

axial shear is iefined by:

T
- J__

S _S S
GA = _A(_:_) = GA(_O)

s is the effective secant shear modulus of the ._te-
where C A

rial. The nonlinearity of ti_e stress-strain relation is ex-

s f_nction of the applied stresspressed by the fact that G A _ .

It is seen that in order to determine G: it is necessary

to compute the average shear strain -_2 for given applied

shear stress. This is a formidable i_roblem even with :he

simplification (2.3. ]) and we shall eonten_ ourselves wiuh a

Drier outline of its formulation. To simplify mat=ers, the

fibers shall be assumed to be ideally rigid relative to the

matrix. This is a very accurate assumption for the case of

Boron and Graphite Fibers. There is no difficult}" to extend

the formulation to the case of non-rigid elastic fibers.

In view of (2.3.3) the problem is two dimensional and

need only be considered in a typical x 2, x 3 section. In the

matrix domain:

(2.3.4)

16.
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•- _ ,n-i,

Y

_ :Iz [i -" (-i--_ n-l'

[

Y

3;? _" C13

(2.3.5a)

t_. •

_2. _'-,._.c ',

2.?.6[

2 2X 2

1 .-u:
£I_ = 2

_X"

u1. -- u I [x 2, x 3)

2.3.7a)

_2.. 3.7b)

and, u I = 0 _t fiber/_atrix interface.

Here equ. (2.3.5) is the only surviving equiiibri_IT_

equation, (2.3°6) are Ram_erg-Osgood stress-strain relations

for isotropic JR theory (2.3.7) are '_ual strain-displace-

ment relations in which u 2 and u 3 do not enter since it x a¥

be shown that they are not functions of x i and (2.3.B) ex-

presses the ideal rigidity of the fibers.

Equs. (2.3.5-°8) m_t be solved subject to boundary

condition (2.3.1). If this is _one the strain £i2 is known

a_d can be averaged to obtain G_ from (2.3.4).everywhere

The problem is exceedingly difficult because of the non-

linearity introduced by the stress-strain relations (2.3.6).

There is very little hope to solve it analycic_lly for any

kind of fiber geometry. It should therefore be handled by

numerical methods for fiber arrangements and fiDer shapcs

of engineering interest.

Another way to approach an analytically intractable

problem such as the present one is by variational techniques.

17.
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In this fashion, approximations or bounds for quantitles

of interest are obtained by methods which are much simpler

than bonafide solution of the problem. Such variational

methods have been extensively used for determination of

effective elastic moduli of FRM (e._., _5_).

In the course of the present work, it has been found that

variational methods can also be _sed for inelastic problems

such as the present one to obtain bounda on effective secant

modu!i. The main ingredients of the i_tboi are:

(a) Construction of an extremu£_ principle _n terms

of an energy integral such that the true energy

is the minimum of the integral.

(b) Expression of the true energy in terms of effec-

tive secant modulus.

(c) Establishment of admissible fields to obtain a

value of the emergy integral which is larger than

the true energy, thus obtaining a bound for G_.

The work involves complicated developments and deriva-

tions which are given in Appendix C. Here only the end result

for a lower bound on G_ will be given for a special geometry

of FRM which is known as composite cylinder asse._Dlage. This

geometry has been described in detail in [i, 5] and consists

of an assemblage of composite cylinders of variable sizes

which aze joined together so _s to fill the whole volume of

the composite. In order to fill the whole volume, composite

cylinders vary from fimite to infinitesimal size. This geom-

etry _as been used to advantage for elastic F_M to obtain

simple expressions for effective elastic _)duli which are well

verified by experiment [I, 5]. In the present case only a

lower bound on G_ has been obtained for the case in which the

exponent n in matrix stress-strain relations is n=3.

It has been found _hat with this exponent and proper

choice of Iy, epoxy shear stress-strain relations can be we!l

described. %he result for the lower bound is:

18.
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l+c

_s s __ 2 ---3

1 • 3
3 (l-c)

Y

(2.3.9)

where

c - volume fraction of fibers

G - elastic (initial) matrix shear modulus

z' - Ramberg-Oscood matrix stress parameter, and
Y

- - applied shear stress.
o

It follows from (2.3.4) that:

_b___

- 2G_(_)

(2.3.10)

S

In other words, with the lower bound on GA an upper bound

on _12 variation with T O is obtained.

if (2.3.10) is explicitly written in terms of (2.3.9) it

assumes the form:

T 3+13c+c2_c_,; < [I "_ (f_)2 3
- _ _' 3 (l+c)_-- ]

(2.3.11)

Recalling that for the composite cylinder assemb!a_e

with rigid fibers the axial elastic shear modulus G A is _iven

in [_, 5] as:

l÷-"

GA = G l----_

(2.3.12)

19.
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_..z --:_L-_---,4 :;' ? i!) with (2.2.6) with cheice of exponent

" ,..L_.. :5 t_e same as matrix exponent), it iS seen that:

3

T1[..i "_ 3#13z+C2+c 3
C2.3.13_

The predimuion cf (2.3.11) has been compared with nuumeri-

cai results obtained in [9}. Fi_.ure 6 shows the variation of

_.he right si_e of [2.3.!I) in comparison with the results ob-

tained in [9] for a fiber volt_e fraction, c=0.5. Since re-

sults of [9] were for boron fibers in epoxy matrix, the rigid

flber approximation is accurately valid. It is seen that the

resul__s -re reasonably close. It should be noted tha= the

geometry of [9] is a rectanculaz fiber array which is quite

differe.nt from _.he com_osite cylinder assemblage geometry.

T:,_ :esulus "_efined by (2.3.12) and (2.3.13} used in

equation (2.2.6) yield the result plotted in non-dimensional

form in Fig. 7. The shear strains are normalized wi=h respect

to _.e m at_l:: - _tic strain, ;re' at :he yield stress, v:

T (2.3.14)=__
ye G

It is natural to also consider the establishment of an

upper bound on G_. Unfortunately, however, _his is a .matter

of formidable difficulty for the reason that inversion of

{2.3.5) to express stresses in terms of strains leads very

complicated expressions. Further discussion of this diffi-

culty is _iven in Appendix C.

20.



3. _:ALYS!S OF NON-LINEAR L,_MINATES

3.1 Formulation

The general problem to be investigated in the present

chapter is as follows: given :he inelastic stress-strain re-

lations 3f uniaxially :einforced laminae determined theoreti-

cally or experimentally, and a l_inaue composed of such

laminae and loaded on its edges by unifor_!y distriDute/ loads

in the plate of the laminate:

(a) What are the stresses in the various laminae?

{b) What is the m_croscopic _trein response of %he

laminate tc the loads?

This problem has been extensively investigated for elastic

laminates, and the results obtained will serve as important

guidelines for the present much more complicated problem. It

is therefore very helpful to first briefly review the _eory

of elastic l_mlnates.

Let _he laminate be re_erred to a fixed system of coord-

inates x I, x 2, x 3 as shown in Figure 8. This will henceforth

be referred to as the laminate coordinate s_stem.

Any laumina, kth say, in the laminate will be refer_ed to

its material system of co,_rdinates x. , x 2 x 3 wh_ e x.

is in fiber direction, x 2 perpendicular to fiber direction

and x 3 is the same as the laminate x 3, Figure 8. The reinforce-

ment angle ek is deflned by:

(k) (k) (3.1.!)
8 = ; {x !, x I ) = ¢ :x 2, x 2 )

Let it be assumed that the laminae are in states of pla:_e stre._._1.

It will be later explained _nder what conditions this is true.

Then the stress-strain rela_ions of a single lamina referred to

its m_terial coordinate system are written in the forts:

(k' (k) 'k_ (a)

_3.1.2)

c(k)= s_k, _(k} (b' 21
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where (3 I 2a) is in tensor notation with range of sub_r _

i, 2 and (3.1.2b) is in matrix notation. It should be neted

that (3.1.2) represent the stress-strain relations (2.1.9 -

.ID), i.e.,

Let a laminate of rectangular form, Figure 8, be loaded

by a uniform edge stre_s:

=Ii _ta' x2) = _i_

_12"-"{+a_ x2) = _l_

zi2(Xl' tb) = J!2

- o
c22(xi' ib) = _22

The elasticity solutio_ _, Of the laminate _us£ _atisfy ehe

following requirements:

(a) Equilibrium of stresses,

(b) Traction continuity at laminae interfaces,

:c) Boundary conditions (3.1.4), and

Cd) Dlsplacement continuity at laminae interfaces.

It is assumed that the stresses in any lamina are con-

stant, but different in the different laminae. The condition

(a) Ls satisfied within any lamina. Since the assumed lamina

stresses are plane there are no traction components on laminae

interfaces. Therefore (b) is satisfied.

The boundary conditions (3.1.4) cannot be strictly _ati_-

fie4 in each lamina but only in an average sense. To do th_s
(k_

lamina s_resses _ _ referred to lamina material coor/inat.__

(3.1.3)

(3.1.4)



are transformed to !_inate axes. The _tre_ses in _ne kth

lamina referred to laminlte axes are denoted (k)ca_. The

:ransforFation is given by:

(k} sin2@k_ii .....!i "k 22 _'12 cos@ k sin @k

22 _ 22 c°s2@k + 2a cos8 k sin 9, (3.1.5)
K

2_
-,- _l,-(_isinO v cos9 K ÷ _(k} [cos2@ - sln .k )

or in matrix notation:

{k) _ = @(k) ¢ (k) (3,i.6)

Let the edges of the laminate be loaded by constant forces

per unit length Tll, T22, TI2 and define the stresses (3.1.4)

as edge averages over the laminate thickness h:

= T1z/h

_22" T22/h

= Tl2/h

(3.1.7)

Equilibrium requires that:

x

gll ii
k=l

K

"22 = 'J"_-2
k=l (3.1.8,_

K

[ 12 = _ 12
k=l

where K is the number of laminae. Written in terms of stresses

¢(_)'- using (3.1.6) we have:

(k) (kJ o

k=£

(3.1.9)

where [o denotes the stresses c:E at the edges. 23.



Replacementof _he boundary conditions (3.1.4) by (3.1.6)
is an approximation of Saint Venant type. Thus, there must be

expected edge perturbations (among them inter!aminar shear) on

the stresses predicted by laminate theory.

Equations (3.1.8) are three equations for the 3K stresses

'2) c(K).(!) _, . in the laminae. There are needed an a_ditional

3(K-I; equations which are provided by displacement con%inuit':

at lamina interfaces, requirement (d).

Since the stresses in e_ch lam/nac arc by hypothesis uni-

form, so are the strains. Therefore, displacenent continuity

is ensured if the famine strains in adjacent laminae, referred

to laminae coordinate system arc the same. Thus:

(k_l)
(k)cil = _-II

(_). = (k-l)_
_22 -22

(k) (k_l)_
£12 = =12

k=i,2 ..... k

(3.1.1_

Equations (3.1.10) are the additional required 3(K-I) equations.

(k} referred
They will be written in terms of l_minae stresses 3 _

to laminae material axes. To do this it is noted that:

which is just a _ransfurmation of (3.1._).

{kit = %(k) S(k_ c(k) (3.!.11)

and inserting the last result in (3.1.10):

@_k_ s(k)_[k)@(k+l)s(k+i) c(k*]) k=l,2 ..... k (3.1.12}

Equations (3.1.9) and (3.1.12) are 3K linear equations for the

3K stresses in an elastic laminate, with K layers.

It should be carefully noted that the analysis given above

is based on plane stress condition_ in individual laminae. This

2 4-.
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is a valid assumption if:

(a,_ The loads on the lau_.inate arc statJ-_[iv eq_.i':-:-

lent to in-plane forces ',membrane forces) and pro-

duce neither ben_in_ nor ".wist_ng moments, and

(b) The laminate has a certain stacking sequence of

laminae which defines a so called balanced or

symme', tic laminate.

This stacking sequence is an arrangement in which the

laminate has a middle plane of ceometrlca! and of material

sy_Jnetry. The laminae are arranged in paris with respezt to

the plane of symmetry. The Im_inae of s'_ch pair have equal

thicknesses, same distances from middle plane, and are of

the same material with saEm angles of reinforcement.

In a non-symmetric laminate application of me_brane

forces will in general produce bending an_ twisting of lam-

inae and thus a plane state of stress will not be realized.

The symmetric laminate is, however, sufficiently versatile

to cover most cases of practical interest.

Let it now be assumed that the laminate is inelastic but

still fulfills the conditions of symmetry and pure membrane

loading. In this case the only equations which necessarily

change in the preceding development are the stress-strain re-

lations of the laminae, (3.1.2), which must De replaced by in-

elastic lauminae stress-strain relations are given by (2.1.7)

where the compliances are now functions of the stresses. These

compliances now replace the elastic compliances in '3.1.2)

which thus become non-linear.

It is convenient for later purposes to rewrite (3.1.2) in

the inelastic case in different form. To do this the strains

c (k)
_ are first split into elastic strains (2.1.9) _nd inelas-

tic strains (2.1.11). Preceeding to (3.1.12) this equation

assumes the form:

8(k+l)sl (k+ll__(k÷l) _ g_(k)sl(k}c_(k) =

_ 8Ck+!)sll(k+l)0[k+l) _ 0(k)sll(k) c(k)

k = i, 2 ..... k

l_.l._;

25.



where

sl(k) - elastic compliance _trix of k=h l_'cr

s!l(k)- inelas%ic part of compliance matrix of kiln l_yer

s(k) = sl(k) + sll(k) (3.1.14)

Equations (3.1.13) are now written out in component form

with notation (2.1.10), (2 i ]2) for compliances:

(k+]_
_Ii '{S

(k+l) 2 . l(k_l}. 2@
cos @k+l SI2 sin k_i)

(_I) (_l(k+l) 2_ +_i(k+l) sin29k+iJ
+:22 _12 cos _k+l _22

(k÷l) _I (k+l) _ c(k) el(k) 2_ _l(k)
"4_12 -44 cos @k+isin@k+ _. _ ('Ii cos _k *_12 sin2%').

cos2ek+S sin2@k ) (k) s_ik_+ _22(k) (_i2-1(k) 22 = 4c12 cos @k. sin@k

(k+i) ll(k+l) 2- ii ''
" - °Ii (Sll cos @k_l+Sl2(kt'_in2@k_ I)

" (k_l: li(k+l_ .

÷ "_22(k÷I)(S1211(k+l}cos2@k÷l+S221i(k+!)sinz@k+l - 4J12 $44 cOS@k_ISln@k_ 1

÷,_k) ll[k) 2. _II (kJsin2% _ {k} :_ t"ii (Sll . • .cos @k+Sl2 + c22 (S12 'k; 9 :;cos'@k÷S_sin-8 k )

_ _, (k) ^ii (k) cOS@kSin@k {3.!. 15)-" 12 _44

26.
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_'I) (S _ !) _ _iCk+l)zoS. a
' sin"gk_ 1 -12 "i_*I

,'k+l) ,_iIk_l) + _(k41)*'22 _S12 sln2@k* 1 2 c°S_@k-I )

+4: (k+i _ _i {k_i)cos# sin@k+12 "43 _-I . 1

-)

_(k) ,_i(k)sin28k _l(k) =os" 8.• II '" li " 512 ._

_k) - _ sinZ@, _ _l(k',
+'22 12 _ =22 " c°_2 @k

(k) .l(kl _I(K)

_4._19 '>i2 544 cos ._. sin 8,

ik+'' _llIk'_i _ ]1 :k+_)COS2= ell (S 'sin 2 @k_,l + S12 @k._l)

+c22(::÷1 ("12-11(k+!) sin2@k_-I ,. $2211(k+l) cos28.,_i

(k) i, (k_ ÷.II (k)cos2@k ]+4c(k+l)"ll(k+l)c°sk_-112_44 sinSk_] + _II (S_ sine k hi2

,(k) 12(k n28k 11 {k)cos2@k+4j (kl ii (k+l)_^~-u22 (S )si +522 . 12 $44 _k+l. sinSk+l.

(3.1.!6)

ii -Ii c°sgk-i

(k+i) (ql{k_i) _l(k_-l)
_'°22 -12 -H22 ) sinOk ._,cos@;.:_l

"2c_ k+l)_l(k+l}_44 (¢°s2@K+l - sin2@_l ).

_ o(k) ..I (k) .l(k)
ii <_ll - _12 ) sinSk c°S%k

)';_] (k_ coS2_k_sln29k }
(k) (<Ii (k) ..I (k) . ,

" c22 _i2 - _22 ) sinSkc°s@k_-2Cl_" _44 : ,

_ (k41) ,_Ii (k+l) SII (k+l)
=- ' II _bll - [2 ) sin@k+l c°SSk+_

_(k+l) .Ii [k+l) il(k+l%

• o_^ ) sinS. cos@ k-_ (a12 - $22 g

I] (k_-i)

{k) -_ll(k) _I1 (k)

• °ii (_II - _12 ) sinek c°s_k

+c. (k) ll(k) ell(k)
'22 (512 " _22 ) sin@ k cos @k

+2_i2(k)_llm44(k2 (cos2@k. _ sin28k )

k = 1,2 ..... k-1

(3.1.17)
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To these m_st be ad3oine4 equations (3.1.9) _°hich are wriuten

here in components:

;':" (k]. v __ . (;<) 2 _. (k _ .:

._=i _12 Si:', @, -Z_12:COS@ < sin%k)t k = ill n
(al

k

k=l"ll -k -22 cos @k" _zi__ cos% k sin@ k ) t< <'22-°h

k.( -'22_ )c's@ _(k} (CCS29k .....
k=l_llr-{k) ._k) <sinSk+'12 " _"'ak'_t'._ = *12"° ....._'_

(3.1.18)

We now consider special cases of interest. In the first

case the inelastic laminae strains have th_ form (2.!.!3).

_he._ the righ_ side of (3.1.15-.17) simplifies by setting:

II (k]_ ii (k+l)
SII - Sil

ell (k_ ii (k) (k) _ (k)
=22 = 522 (e22 ' _12 )

ll(k+l)_ _ _ (k_l) (=
_* {k+l)

$22 - $22 22 "

S_ 14(k' = S4411(k) ( _2(k)2'

ll(k+l; Ii(_*]) . (k+i2
$44 = S44 {D22 '

ll{k) ll(k+l)
= S12 = SI2 = 0

(k+l)
_12 )

(3.1.19)

Once the stresses in the lawinaa have been obtained the

strains in the laminae, referred to laminate axes, are deter-

mined from (3.1.II). Since the strains in all laminae are

the sa_ when referred to the laminate coordinate system, these

28.
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are alse the average laminate strains and thus determine the

inoals_i: resconse of the lauminate.

Zn the simplest case the l_mina material is asst_ed t_

be inelastic in shear only. In that event we have in addition

to (3.1.19) :

< (k) " (<-_>
"22 - $22 = 0 (3.1,20)

and for Ramberg-Osgood presentation of inelastic part of shear

compliance :

(k) :_k-i

_ I (ci2

2GAlk)

ll[k_i!_ 1 _12 (k*l) Nk÷l-I

( "
2S44 2GA (_'+I) (k*l?)

Y

(3.1.21)

In F_mberc-Osgood representation (2.2.1) the "--'--': ......

of the compliances ass'_a forms such as:

_l _12 2 I/2 ("_-i)
S (2<)_ 1 _ [ 222 ) 2 + _ } 1

(k) ' (k) " Ik)

g_ Y Y

]l (k) i
2S44 =

2G A 0y

[ (c22_2 + (__.__)c12 2 ,1/2_,.Vv-li.)

Y

(k*l) (k+l)

II (k+l)_ 1 _22 2 c12 2

$22 _ = (k_i) [ ( (k.i_) i (k+,))

• Y Y

(3.1.22}

,1/2 ('_._+ I- I)

ll(k+l) 1 _22 2 _2 2

2S44 (k+l) _ (-- (k+l)) + ' _k_l) '
2G. C

y Y

]1/2 (Nk-l)
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3.2 Method of Solution

The equations which define the laminae stresses are (3.1.9)

and i3.1.13) in condensed form, or equivalently, {3.1.15- 3.1.17),

(3.1_18) An full form. To explain the solution neuhod it is

simpler to wri'.e in ter_ of the condensed form.

Define the matrices:

L] {k_i)=%_k_l):l(k+l)

Lll(k+i)= @t_i) 511(k+i) (1.2.1)

.l(k) % _k) sl_k)

ll(k) (k_ 511(k_L -- 8

Then equg. (3.1.13) assume the form:

__'l(k+l)_c'k+l)-Ll(k)_ __(k_ = -,Ill'k+l)_c(k*l)+L I_ l{k;__ :k) (3.2.2)

to which are adjoined equs. (3.i.9) which are here rewritten:

.K

L 0_k_c_k)'" ' = o o

k=l - - -
(3.2.3)

The equations _y be solved _%m_erically by an iteration

method which proceeds as follows: Consider eq'_s. (3.2._-3)

with the right side of (3.2.2) zero. This defines a set of

stresses _o (k) given by:

LI(_I) {k+i) _ Ll(k)_(k)

k = 1,2 ..... k=l (3.2.4)

K (k)

k=l

Since (3.2.4a) contains only elastic co,-Jpliances S' (k} it is

seen that the equations are linear and define the stresses in

an elastic laminate. Now insert the stresses co (k) into the

r_ght side of (3.2.2) and define the stresses _-(k) by:
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-LI Ck÷l_ _1 (k+i_ _ -Ll(k) !l (k) = - _LII f_*l_ [Oo_k++'_]_'' _ .... -_o _k+l _'.... (a)

÷!ll(k)[io(k)] _.o(k) (_.2.5_

K (k; (k) .o (b)
Z __ !l = +-

k=l

(k}
Equs. (3.2.5) defines (hopefully) a new approximation _-I

which is the solution of a set of linear equations. The stresses

in square brackets in the right side of (3.2.5) are to e_hasize

the stress dependence of the non-linear parts of the compliances.

The procedure just initiated can be repeated indefinitely.

In general :

: ii (k+l) (k+l) (k_l)L_ (k÷l) c (k+l) -LI (k) 0 (k) =-" [c_ ]
- -£_i -- - _+I - _ -2

+Lll(k) [o(k) ! C(k)
- --£ -£ (3.2.6)

K
l %(k)_ (k) = oo

K=I - -i+l --

This iteration procedure is quite easy to carry out with

aid of a computer. It replaces the solution of a set of non-

linear equations by solution of a sequence of linear equations,

provided of course, that convergence is obtained.

It should be noted that the first iteration step does not

necessarily have to start with equs. (3.2.4a), i.e., with zero

right side of [3.2.2). _ny stresses _,k,: which fulfill (3.2.4b)

can be used to start the iteration with (3.2.5) and continuing

with _he general iteration relation 13.2.6).

It is desired to obtain a laminate solution for only one

load system c ° then it would seem most logical to start with

(3.2.4}. But suppose there is a sequence of loadings l[ °,

2£:o...nL¢ Suppose that a solution for (n-l) t_ _ has been

obtained and that a solution for hA! ° is desired. One possi-

bility is to _oltiply all stresses due to the load (n-l) A_ °

by the factor n/(n-l). The stresses thus obtained certainly
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also satisfy (3.2.6b) because of _,= ,_A._j';.... _'" _c _ho$._.....__-_'=-
tions. _'hey will generally be reasonable starting values

(k) for the iteration.
o

Zhis method of iteration to obtain a solution was found

to work well for many sample proL:ems; however, there were

cases in which the solution ,,:.idnot converge. Atte_4Dts =o modi-

fy the recurrence relatzons to overcome :_his problem met wit_

¢;n!y partial success. Thus, an alternate procedure for solu-

tion was defined. The solution was obtained by application of

the Newton-Raphson method.

The set of 3K nonlinear equations represented by equs.

(3.2.2-.3) may be presented in th _- for._.:

(¢i_ k) = 0 n = 1,2 3K (3.2.7)Fn ...

The function F i is expanded in a Taylor series about an arbi-

trary set of initial stresses which may be taken as the solu-

tions of the elasticity problem. Considering only two terns

of the series, it is found that

c_

o

_F o
k o k , n -1 (3.2.9_

c j = ci_ , k_ F%o m
J..1

whore k_.. is the corrected solution ob=ained from the ass_ed
L3 •

solution Using :?j as the initial guess, t_e process
J

is repeated until the result is oDtained within a desired ac-

curacy. A recurrence form of equation (3.2.9) to obtain the

stre3ses at t-l cycle from t cycle can be constructed as

follows:
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_F

k) 'Ji k} ....(c_ _-*1 = j t [ m .--- .... k !? jt

_J

(3.2.10_

After the stresses =K_ are obtained for all layers of _e

laminate, strains for any layer k in _erms of laminae axes

can De computed using equs. _3.1.3). S_rains in terms of

the laminate axes can be obtained using the strain trans-

fors_tion l_w.

This analysis has been developed into an efficient

computer program. A description of the program including

a listing, as presented in Appendix E.
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3.3 Numerical Results

2hc computer program which has been developed under the

present study has been utilized in the analysis cf a variety

of different composite laminates. The initial studies using

the com.p_:terized analysis were directed at presen%in_ a compari-

son between the results of the present analysis and %hcse of

previous analyses, nutably _at of Ref. 9. [The present results

were also compared to available experimcn_a! data, pri_arily

those of Ref. 6 which had also been used for comparison with the

analytical results in Eel. 9.) The objective of this phase

of the numerical study was to determine whether the present

results, which can be obtained with minimal co_ute _ usage,

compare well with those of the more exact and complex analyti-

cal results in Ref. 9. The results of this comparison are highly

encouraging, as will be shown below, and support the utilization

of the present analysis as an efficient design tool.

In the second phase of the design numerical studies, con-

sideration was given to exa/_,ining the sensitivity of laminate

results to individual properties of the layers. These para-

metric studies are presented for several classes of typical

l_minates.

A series of laminates of boron�epoxy co_.posites for whic_

emperimental data had been obtained in Ref. 6 were examined

analytically in Ref. 9. In Figures 9 to 15, results of the pre-

sent analytical method are added %c the :omparison of experimen-

tal results of [6] and analytical results of [9]. For example,

in Fig. 9, the experimental stress-strain curve for a 0-90 boron/

epoxy laminate is compared to the analytical results obtained

in Ref. 9 and in the present analysis. Both analytical re-

sults coincide; both show slightly less inelastic strain than

the experiment. The solid point on the curve indicates the

stress level at which fiber fracture is computed to occur in

one of _he layers of the laminate.

The shear stress-strain curve used in _he present an%lysis

was _he best fit Ramber_-bsgood curve having an exponent n=3,

34.
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Yhe values of modulus and _rie!d stress obtained from the least

squares fit are show_ on the figure. A similar result is shown

for the unilirectional tension _45 ° ]_Tinate in Fig. 10. Here

it is seen tha= the two analytical curves are similar, although

the agreement is not as close as in Fi_. 9. Experimental data

reflect a substantially higher degree of inelasticity than

either analytical result. The present analysis shows a hi_her

decree of inelastic strain at uhe higher stress level than _hat

of Ref. 9. However, the reverse is true in the comparison of

the two analytical results shown An Fig. II _or a +30 ° laminate.

The present results were obtained with a linear stress-strain

curve in the transverse direction within each of Une layers.

The cov40utations were made in this fashion because the transverse

stress-strain curve of Ref. 9 does not show a significant deg£ee

of inelasticity.

Figure 12 presents results for the case of a quasi-isotrop-

ic !a_nate (0/!45/90) of boron/epoxy. Both the present result

and that of Ref. 9 show a relatively insignificant amount of

inelasticity. A_ain, the experimental data show a greater

inelastic effect. Here the predicted failure straln level is

in good agreement with the exlDeri_ental failure strain level;

however, there is a significant difference in the failure

stress level. A similar Iesult is presented in Fig. 13 for

the quasi-isotropic laminate formed from the 0/160 ° ccnfiqur_-

tion.

Computations perfo.-u_ed for the present study for laminates

having fibers in several directions, including the ioa_ing direc-

tion, for a simple _nidirectional load have shown a relatively

small amount of inelastic strain. Another example of this is

presented in Fig. 14 for a 0/t45 ° laminate. Here, however, the

agreement _[ ell the analytical methods and the experimental

method is very good.

The final comparison taken from Ref. 9 is presented in

Fig. 15 for a laminate having fibers in three different direc-

tions and a tensile load applied at some intermediate angle.

_he present analysis agrees reasonably well with the reshlts
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Ref. 9. ?he _iscrepancy between the failure load predicted

on the basis _f fiber failure and the experime_tally ob-

served fail,re stress is quite su_stantlal, it is psssiblc

_hat fiaiure in laminate cf this type caould result fro_

s_earlng cr t=a:isverse stresses within the individual layers,

anz th_s, not _e a resul= of tension in the f_ber failure.

2his mode of failure has not been trea_ed in th9 present

computer program. The mode of failure observed experimentally

is not known tc the authors.

_hc exper_mental!y measured response of a multidirectionai

i_inate t_ an applied shear stress has been reported in Eel.

13. Comparison of the experimental result with the theory of

Ref. 9 was presented in Ref. 14. Computations for this case,

fade using the present analysis and the prior analytical re-

sult (Ref. 14), are c_npared to the experimental result In

Fig. i6. Again, correiatzon between the two analytical re-

sults is good, agreement between analytical an_ _neoretical

results is reascnably good with the experimental observation

showing higher inelastic strains and lower tangent shear m_duli

at the very high stress levels.

The conclusion of these comparisons with analytical and

experimen_ai data seem to justify the adoption cf the present

computer program as a useful engineering tool for the design

and analysis of composlte l_minates. However, it appears that

further study of the failure region is required.

Para._ecric study of the influence of various la_!nate

geometric and mechanical properties has a!so oeen explored.

Fig. 17 shows the results obtained for a 0/_45 ° laminate in-

dicating that the inelastic response in the transverse direc-

tion can become significant at higher stress levels. Failure

due to fiber fracture under a transverse stress applied to

the laminate occurs at strain levels larger than those plotted

in Flg. 17. In the quasi-lsotropic laminate having four fiber

directions, (0/[45/90) the degree of inelasticity in the longi-

tudinal and transverse directions is of course the same and is
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in ooth cases very s=ail :: is to be --_-_^; ....

intuitive basis, that the maximum degree of inelastic response

would De observed for a stress applied midway Detwocn two of

the fiber directions on _is quasi-isotropic laminate. The

stress-strain curve for this latter _ase is also shown in Fig.

18. Although the inelasnic strains for this case are no_

significant there is a large difference in the predicted

failure stress ie%_Is based on stress in the fiber direction

for _he two cases. _t is worthwhile to emphasize that the

quasi-isotropie laminate need not be isotropic in its strength

characteristics.

Because of the directional strength characteristics inter-

esting effects may be expected for combined stress cases. Some

results of the exploration of this question are presented in

Fig. 19 where the four direction quasi-isotropic laminate is

subjected to combined s_ress state with respect to a 22-I/2"

axis of symmetry. This laminate shows high strength under both

the unidirectional load and shear load by itself. The combined

stress case for equal values of applied shea: stress _d axial

stress results in fiber failare, and therefore, laminate failure,

at a subs_antially lower stress. The stress-strain curve prior

uo failure is not affected significantly by the presence of co, _

bined stress. The quasi-isotropic laminate having f_bers in

three directions (0/Z60) is examined in Fig. 20. The sensitivity

of this laminate to the Ramberg-Osgood parameters for the indi-

vidual ply had little effect upon the stress-strain result. In-

deed as an extreme example of _his variation all laniates stiff-

nesses except uhe axial stiffness were equal to zero. Enforcement

of the Kirchhoff-Love plate assumptions for _his case results

in the so-called netting analysis. The response for this net-

ting case, which is linear, is shown _y the dashed curve in

Fig. 20. Even with this extreme assumption, matrix inelasticity

does not introduce a significant amount of inelastic strain.

Experimental data for comparison with this result are not easily

available, however Ref. 17 does present a stress-strain curvc

for this ease which shows a transverse failure stress for the

37.
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quasi-isotxopi: 0/+60 _ la_isate which _==-_uuc-_.......our of th_

failure stress i_ the axial direction. Also, the inelastic

strain at failure is approximately 30% larger than the elas-

tic strain associated wi=h the failure stress level. The net-

ting analysis result presented here suggests that in order to

obtain such a strain, one night have to consider that the

axial stiffness, either in tension, compression or both; or

that other effects not considered in the conventional lamin-

ate analysis, such as inter!aminar or transverse shear de-

formations, might contribute significantly to the overall

laminate deformation.

The influence of the characteristic stress levels for

transverse stress and axial shear of the unidirectional layer

of a boron/epoxy mat_rlal ks examined in Fig. 21. The measure

of this effect is taken to be the influence upon the stress-

strain curve for the unidirectional tension of ÷30 ° laminate.

The strong sensitivity to the characteristic axial shear

stress r and the relative insensitivity to the transverse
Y

characteristic stress J for the R-O representations as
Y

illustrated in the figure. A similar comparison made for a

boron/alu.minum laminate of the same geometry subjected to

uniaxial applied stress is shown in Fig. 22. Similar sensi-

tivities are observed for this case. Boron/aluminum ia_inate

response under transverse applied stress with the same values

of the Ramberg-Osgood parameters is shown An Fiq. 23. Bere

the fiber failure criterion did not come into play and thus

the computations were extended to rather large strains in

•atrix. I: is clear, that for this case, _he failure criterion

based on other stress-straln components is required. The exam-

ination of the computer print-out permits one to terminate

the stress-strain curves at some stress level prior to fiber

fracture depending upon the choice of __he failure criterion.

This can be done rather readily. The choice of the failure

criterion as discussed in Appendix D.

The lamina properties for boron/aluminum are used uo
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analyze a 0°/t30 ° laminate under co_ined loading. These re-

sults are shown in Fig. 24. Axial stress-strain curves arc

presented for varying ratios of axial shear stress to axial

tensile stress.
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4. CC_CLUDI_G .REMARKS

Current approaches to the definition of design allowable

stress for advanced fiber composite laminates are based upon

the utilization o_ extremely conservative criteria. These :imit

the laminate to stress levels below which no significant dar_e

of any kind occurs. The utilization of overly conservative de-

sign criteria can negate much of the potential for effective de-

sign utilizing advanced composite materials. The heterogeneous

nature of these materials is such that a variety of posslble

damage modes exist. Thus, .matrix cracking or yielding, fiber

fracture, debonding, and other inelastic effects can all occur

in local regions at relatively low average stress levels. These

nonuniform and nonlinear effects greatly co._plicate the problem

of establishing reliable design allowables. In the present pro-

gram, the proble_ of nonlinear la,:inate behavior resulting from

nonlinearities in the behavior of the matrix m_terial was studied.

The objective of the program was to develop an understanding of

the inelastic behavior of composite laminates and to develop a

c_mputer program which will be used as an enqineering tool in

the design of fiber composite laminated struclures.

The method of approach utilized herein was to adopt a Ram-

berg-Os_ood representation of the nonlinear stress-strain be-

havior and to utilize deformation theory as an adequate repre-

sentation of the material nonlinearities, qbe Drob_e_ wds viewed

on two levels. Firs:, the relationship between the constituent

properties and the stress-strain resocnse of a unidirectional

fiber composite material was studied. For this prcblem, the

primary attention herein was directed Toward the axial shezr be-

havior, in as much as experimental data had indicated that i: is

this type of load which results in the most significant nonlineari-

ties in material behavior. For this case, an expression was estab-

lished relating _e composite average,-stress�average-strain curve

to the fiber moduli and the m_trix nonlinear stress-strain curve.

This expression, which was developed as a lower bound, was found

to give qood agreement with the _re exact results obtained by
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applying increm&ntal plasticity theory and using a numerical

finite element analysis to the assessment of the _aterial be-

havior (Ref. 9).

the second level of approach treats the interelationsnip

between _Je properties of the unidirectional layers and those

of _e l_ninate. For this case, one way consider that the

startinq point is a nonlinear stress-strain curve for trans-

verse stress, and for axial shear stress, alone, an_ a linear

stress-strain relation for stress in the fiber direction. The

nonlinear lamina stress-strain curves can be modeled by proper

selection of the Ramb_rg-Osgood parameters.

In the present study, unlike ether formulations an inter-

action expression was forn.uiated to account for simultaneous

application of axial shoat and transverse stress. A laminate

having an arbitrary number of oriented layers, and s'abjected

to a general state of membrane stress, was treated. The results

of this analysis were programmed into an efficient computer

routine for numerical evaluation of arbitrary laminates. Results

obtained show good agreement with those of p_evious complex

numerical methods utilizing incremental plasticity _heory.

Certain limitations connecte_ with this program should

also be discussed. First, deformation type stress-s_rain re-

lations have been used; hence, it is implicit in this result

that the stress and strain values obtained for _ny given set

of loads are functions only of those loads and not of the

loading history. On the other hand, if points are cor_puted for

intermediate values of loads, following different load paths,

then different intermediate conditions will be obtained. Thus,

the question is raised as to what is the accuracy of _he results

obtained for paths which do not yield proportional loading. It

is known that for local proportional loading, _-he deformation

theory result is the sa_ as _hat for the incremental theory.

In the laminate, local proportional loading does not exist,

in general, even when the external loading is proportional. How-

ever, the assumption is _ade that the deformation theory will

yield an approximation which is satisfa2tory to generate a

41.
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rational engineering tool. This can only be a&&essed by com-

parison with an exact analysis, or since this does not exist

for the case of arbitrary loading paths, perhaps by comparison

with experimental data.

Comparisons of the present results with experirental data

tend to show moderately good agreement. There are, however,

cases in which experi._ental results sho%' a nigher degree of

inelastic strain than predicted Dy _he present analysis. These

experimental data are quite limited and n_y be insufficient

for drawing conclusions in this regard.

The question of failure criteria incorporated into the pre-

sent analysis required further consideration. The present

analysis obtains more accurate represenuations of the stress

components in the individual layers than have been obtained

from elastic analyses. Hence, the use of _hese stress components

in any failure criteria should represent an improvement in

failure pred_c=ion

In addition to a description of the me_hods of analysis,

aad of the numerical comparisons which have been carried out,

the present report also presents a description of the computer

program for study of nonlinear behavior of laminates in suffi-

cient detail to pe.--mit the utilization of this program by

others.
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APPENDIX A

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS

The _s_. general inelastic stress-strain relations _'_:_tr,e

defc:'mation type are of the form

{i 3 = Sijkl 2kl

where Si_klare functicns o: the stresses. Let it ' " "

that the material is transversely isotropic with x I axis of

symmetry. Any rotation about x I chan_es _lj and "_ij into _'ij

and 'J'... Then the condition of transverse isotropy de._.as,ds
13

that

! &

c IJ = Sijkl c kl
(2}

where Sijki in (i) and (2) are the same. To fulfill _nis last

requirement it is necessary _at Sijkl be functions of 5tresses

only through stress expressions which are invarlant for rota-

tions about the x I axis. There are five such invariant_ and

they are given by, [!5]

22+ci 2 (3)Ii = ell Y2 = c22"c33 _3 = _i 3

14 = i/2(c22-J33)2+2n232 ffi ,, - 2_ .2t_ 1 _15 1/2,_22 c33) (_122-D13 ' 2"i3_23
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51jkl = Sijkl {I.,_ 12, 13, 14, !__ _4 _

i: foilo.,s t_lat _or rotations around tne x I axis of

sy._c,n'-rl/ ".i.e Sijk! cenavc., as constax-__. Con.=.equently, the

sy.-_.r,/ red,orion e_ _i_ -.o tran3verse _sotrop}' is 2ust

a5 in elasticity.

_'he redaction may &c perform_ in f_ilcwinj fashion: For

rotation of angle O a_out :he x. axis, the stress tensor ,-
z _j

transfurn-3 znto i';: in the _:ollo'_:inq fashion

" ii = _iI

¢ 22 : i/2 {_22 + _J33 ) + I/2 (022 - z33) cos 20 + c£3 sin 2g

33 -- 1,'2 (c22 _ c_3) - 1/2 (c22 - z33) CoB 28 - ":_3 sin 20

c 23 = i/2 (_33 - C22)sin 2@ - c23 cos 29

'_2'" _12 cOS @ * Cl] sin
(5)

_" 13 = -c12 sin 0 _- c13 cos 0

The s_me transformation relations obvieus!y also hold for

strains. If t_e transformed stresses and strains are intro-

duced into (2) then coefficients of cos 2e, sxn 2e, cos % and

sin @ and re.maining terms independent of @ must be equal.

These equalities result in relations among the various compo-

nents which reduce _ne stress-strain law to the for_ (2.1.4- 5)

from Chapter 2 of this repozt. (Average stresses and strains

appear in the latter but this obviously makes no differences

in the derivation.)

44.
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APPENDIX .3

_LANE STKESS-STKAIh "_ELATIOD:S OF rT_,-_ _¢T,,-_'_._r_n M_OT%: Tv

GENERAL=ZED P_BFKG-OSGOOD FORM

The Furp_se of the present appendix i_ to arrive _t

e.!us. {2.2.7i. For convenience in writinc, overbars on

szresses and strain_ will be omitted,

The present dev_!opr,_ent, is guided by isotropic 32 the_ry

for deformation type plastic strgss-straln relations. The basic

assumytion of this =heory in ",he isotropic case is t/-,at the

plastic strains have the form

- _ (j2) s i [] }£i3 = " 3

where s.. is r/me stress deviator and
19

22 = 1/2 sij sij {2)

is its second invariant.

It is instructive to work out tnc form of {i) for Ramberg-

Csgood :type stress-strain relations. Suppose that _n pure _hn_r

thc stress-strain relation is

c12 (:i2) n-I (3}
=----£12 [i J, ]

2G "y

NO',. in pure shear it follows from {2_ -_ha:
2

J2 = :12

Therefore (3) can oe _,ritten in the form

el2 ¢J_"- n-I

Y

which is in the fort.(1). Con3equently, in the general case of

%:_ree dimensional stress and strain

_xi = 2G
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it should De emphasized that there is nothing funda,_entai

about "}. It is an assumption which states dnat the plastic

s_rains can be represented Dy the stress deviator co_ponents

multiplied by a function of a quadra:ic expression in the stress-

es which is J2" The choice of J2 for a quadratic expression

is not arDitrar)' but _ay be arrived at by iso_ropy arg_._ents.

in an anisotrovic material it ma)" bc ass_zed by general-

ization that plastic strains are given b'f

_ = s.. f (L> (6)

Where L is so_e general quadratic function of the stresses. T_is

ass'imption will form the basis of the present development.

Consider the stress-strain relations (2.1.13). It

it iv

is assume_ that s22 and s44 functions of the r,_)st

general quadratic form in _22 an_ _12"

thus

s22 = s22 (A_222 + Bc22 _12 _ C_122)

.... 2 _ B-- -- , C-C2,_ (7)
s44 " s44 (A_22 22 "12 _2 '

It shculd Oo noted the= r_e m_t_rial raact_ in sate _ashion

to positive or negative shear stress, therefore also in sam.2

fashion to some s22 together with positive or negative shear

stress. ,owever, th_ niddle te_-m in the quadratic changes

sign with shear stress. Therefore, this _ern_ Should be o_tted.

_ow rewrite (7) in form

i 2 -- 2 _2 - 2_
s 2 = E--Tf22 (_ _22 + _!2 "

2

I 2 -- 2 ,2 --s 4 - f44 {'_ _22 ÷ _ c12 )

2G T
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where f22 and f44 are nendi_ensicn_! f,,_nctiens _nJ _ and

nave dimensions of reciprocal of _tress. If _12=0 the firs% cf

(8! a55ume_s _he form

., _ _ 2
s22 = _ f22 ( 2 "22 ) (9)

Vor one dimensional ?22 p

strain relation (2.2.6a)

i_22) M-I
s22 ET .%----

Y
which can be written as

" i_ ,_22,2,_

s22 = ET [ _---, JY

It follows from (8) and (10; that

2 i
a = ---_

ey

and the fuunction of f22 is determined as ('4-11/2 power.

In similar fashion, when[22=0 , the second of (8) ass%umes

the form

from ".he Ra_berg-Osgood stress-

_13)

|!i)

- 1 (_2[122) (12)
s44 = _ f44 "

From the R_mberg-Osgood relation (2.2.6b_ for one dimen-

sional _!2

1 .ci2. N-I

wnich can be written as

" i .Cl2" 2 N-I

s44 _ [_--_ ] 2 (I
y

It follows from (121 and (13) that

_2 1

T
Y

47.

, I I II



and the function f44

Consequently (8) now assumes the form

%" 2 - 2 M-I
I (-22)__ c12 . --

s22" - __ [ .. - (-----',. , 2

¥ Y

2hen (2.2.7', fol-ows from {15) and (2.1.!3).

is determined as (:_-I)/2 power.

_15)
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APPENDIX C

I. EXTRFMUM PRI,',:CIPLE$ OF DEFOF-_AT[O N THEORY Or PLASTICITY

i. Principle of Minimum Po:enula! Ener.cy

Let

- ijkl " -.

where Cijkl are f_nctlons of _.he strains. The strain energy

• _ " _n ...Tral_ens:zv i =- defined _v the pa-_n dependent : _=

c

;,_6= .- . :_%_._ (_.2}
.:=0 -:'_"-" ij

where _ is a concis-_ nota=i_n for _i3 The strain energy

U c ef a body of vol'c._ V is define A. Zy

,,c - {I 3)
= /V W= d V

i--_ .he sur_;a.-_ Of _he bcdT be s,'-zje=t-_d tc v_be -_oTndary c,_n-

d,_tic:is

u, (S) -- u °. on S (1.4)

._ (S) = T° i on S_i

and let the body force3 vanish.

is defined _y

/VWadV _ 7 ° m.
DD "S_ I I

Zefine an adrissiblc _ispLacement field

-. = _Ao Or, S

The _otentiai energF U

(1.5_

_.. (x) by
l --

J

_. (x) continuous ever_<-here
l --

Associated with 5. are the strain_ [.
% 13

_%e " "u_ua. relations
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De f_.ne ;4" b'_."

?.

w" = ' ? _ _-
1] o

#=O

W_7_ _C

'" .7>

be fine

"-_p = .'vW_dV- ._ -'_.dS, (i.9)

The principle of miniT":_, po_-ential energy for _h_ present case

t:.en states _hat

U > L: (i.i0, _
p-- c.

eq'Jality taking place if and cnly if

I I

In the e-'ent that disp]aceTe::ts are prcs=r±:._ over the

cn:ir_ s Jrfacc, %he surface integral ' (1.9_ vanishes.-_c-,

the orincipie ......... ___u .... to than "_f r_inimum strain enerq_f

-; (1.]1)

ii. Principle of Yinir:_um_ Cop..,plez_-n%ar';. _nergy

Let

where $ .... are stress aependent coT,p!ia3ce$

(I .12_
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. -- .... _- .', wj w.. .....

Jegendent in-_egr al

wc (i. l 3 )
_.j l]

j=C

_et the s_rface of +_" .,_e body De subjected to the boundary con-

ditions (L4)and leu the body forces va_i3h. The coz,plementary

energy '_..s defined by

U. = .'vWCdV - /c Tiu° i
(1.!4)dS

Define an admissible _=_.ress field

requirenents

9.. by the following
i]

T i = 9ijn j con=inuous everFwhere
(!.'.,5)

T i(S) - T".I on S T

. byDefine the complementary enercy functicnal U C

= : _..ZdV - . T,uO £5 (I.16)
UC _V" S ! i

U

w:er_ c = ;! _ijd_.._:
(i.17)

_-ij= Sijk1(_) _l

Then +_he principle of minimu_ compla_ntary cncrgy sta*¢e_ that

U C -->U_ (I. 18)

equality occurring if and only if

@i9 = _i3

If tractions are prescribed over the entire surface, Su_00

the principle reduces to

{I.19)
UJ > U C
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For proof of these princiole_.._ae e.g. L-_, .................... :
applicati:_n tc o_tain approximate _olut:ons ha?,nccn g_ve::

in [17 .

l_i. S_ecialization of the Principles to Axial Shc_r wi_h

Ra[bgr_-Os_ood Stress-Strain _eiattons

In %he case of axial shear of a uniaxially fiber reinfcrce5

materia' the only surviving stresses are

- = ] c13 = T 3"12 2
(1.20}

where i indicates fiber dir on. _=_-'_,u_ .._ _o .............. -

strains by

(_. 21)

el2 = =2 £13 3

Then the generalized Ram_erg-Osgood stress-strain relations,

Appenlix B, (5} a_sune i_ the present case the form

[2 ,_ n-i

62 = _ [ 1 + __---). ]
Y

=3 _ n-i

Y

T _- v" 2 _"_P_'_
'2 _ ;3 2

(1.22)

in the present case

cijd£ij = 2(=2d_2+13d_3 )
Ii.23_
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Inserting (1.22) into (1.23) and u_ing the relation

TdT = T2d :2+:3d -3

it is easily shown that

n-I

• at .... [ i + n (_-_ _ d: (!.24_
c_ 3 _j G .y

TO compute W 6 as defined by (1.2) it is necessary to

integrate (1.24) from zero to some s:a_e of strain 62' £3"

But it should be noted that (1.24) is expressed in terms of

the variable _ only. Now _ can be expressed in terms of

strains in following fashion. Define

= v'-22e 2+ c3

It follo%'s at once from (1.22) "Jnat

n-I
Z T T

= _ [i + (iF-) ]
Y

This relation defines T

q aently, W _ assuN_es the form

1
W _ . _ /

o

a_ a f na.ction "_

n-i

- [i * n (._--)

Y

(1.25)

(i .26)

which is easily integrated to yield

_2 2n (____)n- ]
w_ = _-_ {i +_-_/ _ 1

Y

(1.27, _

- = T (_)

According to (1.3) the strain energy U c is then given by

the volume integral of (1.27). Note however that it is very

difficult to express U £ in terms of strains since this requires

the solution of (1.26) for _ in terms of {. In general it is

not possible to do this analytically. This places a severe
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limitation on the use of the principle Ot _::-iff,.i_ pu_._._aJ.

energy or of min_m_T, strain-energy w_.tn Rar_ _rg-Osgoed stress-

strain relations.

_.cxt we consider the principle of minim,a: complementary

energy for axial shear. Since there are or!y shear s_resses

the integrand in _" '9 ," w T w2 _3 and shear strain_ £2 £3

(I. _ 3) , is given by

_ d_ = 2 (1.28)
-_-3 _-3 ¢2d:2"c 3d_ 3)

It follows from (1.22-.23) t_at (1.28) is given by

n-I

d= = [i + (__--) ] d_
¢i3 i_ G y

Integration of this expression fron 0 to - ..__,A,

2 n-I

w c _ 2 (/._) ] (1.29)= 2-_ [ I + n-;y
Y

Expression (1.29) now enters as the integral into the volume

integral of U C, (1.i4).

we now examine t_he ..nean£ng of an admissibl_- _ stress field

T2' ='3 in the present case. The only surviving emuilibrium

equation is

3_ _'- (1.30)
2 - 3

-- ÷ . - 0
_x 2 _x 3

The traction components are

T 1 = %2n2_ =3n3

, (i. 31)

T 2 _ _2ni

3 3nl
• r-" %- .- _

we shall be concernei with cylindrical boundarie_ in .... L

reinforced materials ",:hose generator is in x l, direction. On such

a surface nl=0. Therefore the only surviving t:act;_n compo-

nent on such a s_rfaze is

I'. = :" _- "- " (I 32)
n T 2n2" 3n3
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must satis fyC_nsequently an admissible stress system :'3' "3

(1.30) and the value T ° of _. wherever prescribed on the
n n

bo'.Inda ry,

The co_4_lementary energy ftLnctional (1.16) ass_t_es the for_

Uc _ /vW_dV - / TlU_idS
S

u n-i
2 L_)

* y_ [i +_-:T ( ]
Y

= ¢: 2 2
_2 + '3

(b)

(c)

(I. 33)
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2. LO.qER BOU);L3 FOR AXIAL 5H_AR u,_""_=

C3nsider a uniaxia "_'; reinforced lar.ina which is subjected

to axial shear =o In the I-2 plane on its boundary, fig. 5.

u,.,the average stress theorem, of .%ef. 5.

; = = (2.i)
_!2 o

and all other averag- _ stresse_ vani._.

__y th_ average theorem of virtual work, of Ref. 5,

• _. ,d,:.. = 7.. d :_. _2 2)
V 13 13 zJ _-3

Sin=e the only nonvanishing average stress in the present

case is (2.1) we have

[ijd_ij = 2_12 d_a (2.3)

The complementary energy of the body is given by (14) of

Appendix A. The surface integral vanishes however in the pre-

sent case since no disp!acemants are prescribed on the

_our.dary. Now

UC =r W caV = : r -- - d_. dV• _V " "_3 _3

V E= 3 (2.4)

7 dV ; d'[.=

Yhe las= eqaality foiiov:lng from (2.2, 3).

5v def%nition the effective secant mcduluB GL is giver" by

c-12 _

_12 Gs - 2G A _ o)A '_ 2 _

Hence (2.4) assarums the for_.

-© TodT o

UC= V/ r_s

_s
rn order to find a bound on _A

find a bouni on

(2.5)

(2.6)

it "._;illme necessary to

(2.6) by use of the principle of mininar, cem-

plenentary energy.
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It is assumed that the fibers are infinitely rlgid in com-

parison to the _,atrlx. Therefore at fiDer/ma_,rix interface

u I = C (2.7)

and _ne ol%iy contrib_.%ion to the .om:l ..........,

=he matrix. 'inus, the surface integral in rl.33a -, _s _

it can be written as

_C f _';'_ dV ,'_ 8,
V
_n

where V is the matrix voiu_:e.
m

Furtherr_re, Dy (2.3.3) the actual stresscs are f_nctions

of x 2, x] only. I= is therefore natural to also chcose a_-lissible

stresses as functions of x 2, ×3 " Th_s _q'3 in (1.33) becomas

a function of x 2, x3 only and tlqerefore without loss of generality

(1.33a) can be taken over _unit length in fiber direction. Thus

it can De written

UC = "Am W c (x2, x3 ) dx 2 dx 3 (2.9

In order to construct an admissible =zres_ _y_te,T _t _-

necessary to devise a geometrical m_del for a _aniaxially rein-

forced material In past _nalyses of F_4 two kinds of .models

have been successfully treate_: Periodic arrays of identical

circular fibers have been analyzed numerically with the aid of

computers and the composite cylinder assemblage =mdel has been

treated analytically [1,5_ yielding simple closed results. Since

the present treatment is to De analytical the composite cylinder

assemblage model will be used. A detai_.ed description of the

model has been given in[5]. Suffice it :o say here that the model

represents a cylindrical specimen of a fiber reinforcei material

as an assemblage of composite cylinders o_ differen_ sizes which

fill _he space in the limit. In each composite cylinder the

inner cylinder is a fiber and the outer shell is matrix material.
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In all cylinder3 *-he ra:i.es of fiber =o ;_,atrix ,_i:_'i rac]±J& a_'.%

the _=ame, [figure 25_.

I: is recalle_ :hat at: admissibl_ stress s','s_em must satisfy

eq_ilibriui: and cocndary co.ndlttons. An obvlo%',_ _>_ssib:.',ity

fcr such an admissible field are th_ stresse3 of the ei(Ls£'-c

solution sLnce they =ertainly satisfy the rcquire,_ conditions.

:hese stresses are the same in any composite cylinder cf the

assemblage and are uiven in cylin!ricai cocrdinatcs b'f {see [5:)

2

= _ = _-+d (i * _) cos e
9rz r __ __r (2.10)

• 2

9Sz - :e i_ (I - _:) sin @
where c is the vo!_R:e frac_ion4 of fibers, a is t/to. radius "_f any

fiber and x,Sare polar coordinates, fig. 26.

- . _s an invariant withSince _ as ex:;ressed by (1.33c)

respect to rotations about x, = z we have also

2 2

= _ + _ (2.11)
r @

$ub-=titating (2.10} into (2.11) yields

= " 2 (2.12)
- p (i - " + -- cos %:t

where

T
r {2.13)

l+c c =._
a

TO simplify t/Re analysis the exponent n in _I. ,_,_°__'ill

be assigned the value

n = 3 (2.14)

It has been found that with this value of n, experimentally

obtained shear stress-strain relations of epoxy can be quite

accurately represented with proper choice of I Recallin_
Y

(1.33), (2.9) then ass'tu_es the form

1 , =_ [i + 1 ('---) ]dA (2.15)
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where G is the matrix elastic shear m_dulus. Let the assemblage
k

consist of _ composite cylinder. Define U C for the ktn comp-

osite cylinder by

_C k 1 . ;_ [i + ½ (&)_= _-_ . ] dA (2.16)
mk _y

:,:k.ere An/< is the matrix area ak<r<_b k in the kth composite

cylinder. Then

" K ._ k
U C = Z _C (2.17)

k=l

Since ;2_ has been expressed in polar coordinates, (2. '_),

it is convenient to also evaluate (2.16) in the same coordinates.

Using the variable _ we have

UC_ , ,= 2-_" _:[l + (?-)
1 0 y

] _d.-,d%
(2.18)

_here

= bk/a k
(2.19)

wh'ch by construction has _he sane va]::e in '_ composite cy-

linders. Note also that the voi_e fra:tion of fibers c is

9iven by ak

Substituting (2.12) into (2.18) and carrying out the integra-

tion we have

~ . ,bz k 7

_C _ _ 3" 10c- 12C _-C
_21-c _ "

= [l--_c + (--_) ,+ ,., ] (2.21)° . 6(c)
Y
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where (2.20) has been used. It is seen that _b_ k is the area

of the cross section of the kth co_posite cylinder and the

parenthesis has :he sa_ne value for all composite cylinders.

Tkerefore, if (2.21) is inserted into '2.17) we find

A : _-- /.z, _' 3-10 c-12 __
::C = -- = [_ + - - c ]2: ° +l 1 ,

- " 'y 6 (i'c) "

(2.22)

,at (2.22) be ::titre-,

ro i dUC

UC = A ; o A d_
a l o (2.23)

Witnout loss of generality (2.6) can be evaluated for unit

helght of cyl_ndrical speci._en. Thus

+° - _" (2 24)

_A " o)

Xow introduce (2.23) and (2.24_ into the v/nimtu:l co_4)lementary

inequality {I.IB) . Thus

o dU C
" '+" + "° ] d=o > 0 {2.25)- ,.s
o _.(lo;

Since tAe inte::ral is positive for all values of _o

the integrand must also be positive for al! valu___ of _o •

It follo::s that

• ATo S (2.26)
GA :=o; .i -- = GA(_ )

JUc/d_ o

where the extreme right denotes lower bound on the s_ca_:t

modul_s _s Substituting (2.22) into (2.26) and rearrzn_-
_'A"

ing we find the lowdr bound (2.3.9) of Chapter 2.

There naturally arises the question of the esta_i_shP_nt

of an upper bound. The difficulties involved have been dis-

cussed adore: It is not in genern! possible to solve RaFberg-

Osgood relations for stresses in terms cf strains. It is
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tnorefore not posscc.lc to anaZyticaiy e×pre_@the potent£ -_

energy f,Jnctional in _erms of admissible strains.

A t_ossihility tO re_Ive ti_e difficulty is to write Zn-

elastic stress-strain relations of type (1.22) in the form

2G_ 2 _ _I 2 = [ (_--):.
Y

_-i

T 3

= ¢/ 2

__22+:-3

(2.27)

where a and _ are to De determined by c&rve fitting. Tho

minus sign in t_e parenthesis is due to ti,e fact tna_ the

stress-strain curve is &clow a s:raight line with the isitial

slope.

It should be no_ed that (2.27) arc not an inversion of

{1.22). They are merely another form of approximation of

ac_a! stress-strain carves.

In principle the representation (2.27) can now be used in

conjunction with the principle of minimum potential energy

to establish an upper bound on G_ in same fashion as a lower

bound has been established. It has however been found that in

attempting to fit (2.27) to actual epoxy stress-strain curves

a fractional exponent _ was needed. This le_ to integrals of

formidable difficulty in the evaluation of potential energy

functionals. Therefore this approach has not been continued

here.
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APPENDIX D

FA_L_RE OF XON-LIN-_AR L2_:I'4ATES

It is expedient to separate the problem of the establish-

rent of failure criteria of lardnates into two separate problems:

(a} Estabiish[_ent of failure criteri_ for uniazially

fiber reinforced material, i.e., l_minae.

(b) Establishment of failure criteria of the laminate

on Lhe basis of laminae failure crizeria.

A great deal of wrok has been done on problem {a). The

problem has been approached in micro as well as macro-fashion.

In _/cro-approach, it is attempted to predict failure on the

basis of local analysis of :he interior of the composite. Such

an approach evidently encounters extreme difficulties. Although

important work of fundamental nature has been done in this area,

we shall not be concerned with it here since the work has not

advanced to the stage of prediction of failure criteria under

states of combined stress.

In the _acro-approach, a failure criterion is heuristically

postulated as some function of pertinent sta_e variables (gener-

ally average stresses) which also contains _ndetermined para-

meters° These parametors are then to be deterntined in terms of

experimentally accessible information.

we shall i_ the present discussion% limit ourselves to sta_es

of plane stress. The simplest failuxe criterion is the so-called

maximum stress criterion which states "_hat failure occurs when

either one of: Stress in fiber direction, stress transverse to

fibers, shear s_ress, reaches its critical value, these cri-

tical values being the same whether or not the stresses act

simultaneously. In symbols the criterion is:

C, . = C.

o_

z22 = c T

(I)
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I

where 1 is fiber d_rection and 2 _ the transverse direction.

C_enerally, failure stresses cA and _T are different in

tension and compression. This is known as Bauschinge_ effect.

There is evidently no Ba_sch_nger effect for _.he shear stre_s.

The _implest generalization of (i) to account for _a_schinger

effect '_ould be "-o assa_e as failure cri'._rion:

li A II

= - - if _ < C
el! ";, 21

c2Z = c -- :22

a = ._ if c : 9
22 22 22

zl2 = A%- al_ _12

whichever occurs first, where (_) and (-) superscripts denote

fail_re stresses in tension and compression respectively. The

main drawback of these simple criteria is in that they take

no account of interaction effects.

The most commonly used criterion which takes into account

interaction is of quadratic fo.._m. For plane stress it has the

form

2 .2=
Alibi + A22 c22 _ A12_II_22 + A44_ !2 1 (3)

Here, products of shear stress with normal stres_ have been

omdtted since %he m_terial cannot distinguish between positive

and negative shear stress. Therefore, edd p_ers (one, in this

case) of shear s_ress cannot appear.

Applying (3) to failure for stress in fiber direction

alone, stress transverse to fiber direction alone, shear stress

alone, in turn, it is seen at once that



]
A..

A22 - 2

:T (4)

1
A44 - -...2

The coefficient AI2 is troublesome since its determina-

....e.stion require_ a failure experin_nt under combined =_ s .

Several authors have proposed to use failure experiment_ %n

off-axis specimens under uniaxiai stress for the determination

of AI2. See e.g. [18] for iiscussion.

The situation becomes more complicated if it is required

to take into account Bauschinger effect, that is difference of

failure stresses in tension and =ompression. One possiDili=y

=o account for this effect is to assume that All, A22 ass_e

different values for tenslon _nd :omprcssion. The situation

regarding _12' however, becomes very awkward as it would have

to assume four different values to ac=ount for four different

possibiiizies of sign =ordination in biaxial stressing

and

It is also possible to add linear te._m..s to :3] in which

case it would assume the form:

2 , 2 2
All-'11 +:'22_22 - A12_I]C22 " 44:'12 + (5)

- ÷ 5._-22 = 1-']i z

S'_ch a d_vice was suggested by Loff_an [19]. In this case At

is possible to /eternine values of A_,., B I, A22, B 2 to account

fcr different tensile and _ _'=comr.es._. _niaxial failure stresses

in fiber direction and _ransverse to it. But th_ difficulty of

assign.in.'/ four different values tc AI2 re,ains, unfortunately.

In sum_ry, the status of q_adra'_ic failure criteria _as

".o date not been finalized. However, special versions of such

criteria have been successfuil- f __ea to experimental data.

-Tt is of importance tc r.;_l!':c that in the fiber rein-

force/ [_.aterials used in practice failure predictions on the

64,



basis of naximumstress zri:erion or quadratic failure cri-
terion are not very iifferent. This is due to the iarge

ratios between strength in fiber direction and transverse

and shear strengths and is easiest realized by considering

the failure criteria as surfaces in z.. , _ c stress
_ 22' 12

space. The maxil:u_ stress criterion is a very elongated

rectangular parallelcpiped while the quadratic failure cri-

terion is an ellipsoid. For AI2=0, Fig. 25 sno_s this

schematically on a cut in the ell, c22 pla_e. Thus it is

seen that stress points on the two failure surfaces are clese

%ogether for _st parts of the surfaces.

The situation would be entirely different for a material

in which OA' and _T were of comparable magnitudes.

We shall now consider problem (b) i.e., the establishment

of laminate failure criteria in terms of laminae failure cri-

teria. The most conservative laminate failure criterion is _o

assume _.hat once any l_ina has failed the laminate ha_ reached

its ultimate load. There are eases of laminates in which all

laminae would fail simultaneously and then this criterion would

be justified. For example: a ÷% laminate in which the exter-

nal load direction bisects _.ha angle between the fibers.

In most cases, however, a certain group of laminae will

fail first and failure of remainin3 greups would require fur-

ther increase o_ load. Therefore a more realistic alternative

is to determine the load at which _he first laminae group fails.

At this state, the fulther carrying capacity of the laminate

may be assumed to be given by the remainin_ undan_ged laminae.

The increase in load which fails ar_other group of laminae is

then determined. This process is continued until failure of

all laminae has taken place.

still another possibility is _o assume that when a la_ina

has failed, certain of its stiffnesses reduce to zero. For ex-

a_le: suppose that a lamina or group of laminae has failed

in shear. Such a failure implies a crack through the lamina in

fiber direction. In that event, it is reasonable to assum_
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that the shear and transverse stl_fnesses of the lamina are

zero, mut it still retains its stiffness in fiber direction.

If, however, a iamina fails because of the stres_ in rider

direction the Camage is sc widespread that all of its stiff-

messes wiil be negl_gible. According to the _ype of _ail_.es

enzountered analysis is continued for the damaged laminate

wilt the new _tiffness rearrangement. This process is con-

tinued until f_ilure of all laminae has taken -.lace. ghis

_thod of analysis seems to be the most realist5 _ but is

also the most complicated.

In almost all of the practical strength analyses of

laminates in the literature, according to any of the ..methods

Coutlined above, the stresses used for _ailu.e criteria have

Deem determined on the basis of elastic la_.nina%e analysis.

_i_h the presen_ inelastic laminate analysis, more realistic

stresses are available in a D_•tt=_r assessment ^_ laminate

failure loads.
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A_nPENDIX E

MSC-NOLIN COMPUTER PROGP_M

i. G_neral Description of the Pro_

Tills is a computer program developed for the inelastic

analysis of a laminate subject to any constant, arbitral'

combination of in-plane loading. Details of the method of

analysis and of The numerical solution, usin] the Newton-

Raphson method, have been described in the body of this

report. The essential features of the program are summari-

zed below.

The primary capability of MSC-MOLIN is to compute lam-

inae properties when the laminate loads are defined. There

is also a limited capability to work with constituent proper-

ties, rather than laninae properties, as the _nput. Details of

the input options are discussed subsequently. Basically, the

inputs required are rlne s_ress-strain characteristics cf the

individual laminae for each of the _hree in-plane stress

components applied separately. The stress-strain curves for

transverse stress and for stress and for axial shear stress

are defined by Ramberg-Osgood stress-strain curves. The

parameters for these curves along with the laminae elastic

constants are the required m_terial property inputs.

It has been observed that axial shear stresses in indivi-

dual laminae are a major, perhaps the major, source of non-

linearities in lamina:_ response. Therefore, several additional

options have been included in the MSC-NOLIN to accomodate note

detailed characterization of shear response. First_ the lam-

inae shesr stress-strain response ..nay be input in tabular

form and a least squares fit to the data is automatically ob-

tained for the R-O yield stress (limited to the use of an

exponent, n=3). Secondly, the _atrix shear stress-strain curve

can be input along with fiber elastic properties and the laminae

shear stress-straln curve will be computed. In this letter case,

6he laminae elastic constants are also computed.
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The input specifies one of two option_, f_,r the determir_a-

_lon of the initial s_ of stresses to be used in the itera-

tion at each v_l_e of applied load on the laminate. In one

case the _%____ses foun_ a+. one load are incre_seJ to the load

for whzch t!_e stresses were eval_:atcd, in the other, and

generally usel option, the increment between the initial stresses

used at the nth iar.imate lo_d v_lue and the actual s_.resses

foJnd for tnc ' _',n-_,sz load value bears the same relation to the

ratio of those _.wo load values as the similar relation co._.p_ted

ah the previous load cycle, that is,

(n) (n-l) (n-i) (n-2)

Fn/Fn- 1 Fn_i/Fn_ 2

_he program contains a number of controls to define: _qc

size and number Df steps of loading at which computations are

made; the maximum n_n_er of iterations to be permitted i: the

numerical solution; the desired accuracy to be obtained in

convergence; the criteria for divezgence of the solution in

the iterative process to avoid the use of unnecessary execu-

tion time in the case of breakdown of the solution procedure.

The program defines the failure of the laminate in a limited

fashion, either on the basis of the maximum allowable stress

in the f_bcr in _ension or compression, or on the basis that

the tangent modulus of the stress-strain curve of Lhe laminate

becomes less than a specifie_ value. Failure due to shear or

transverse stress are not included at this stage in the develop-

ment of the program.

2.

ins:

68.

Input

The main features of input in this program are the follow-

(a) Specify tae number of laminates or problems t_ be

solved;



I I

_b Define _e geometrical properties of each layer;

[c Define either the material properties of each layer

or the properties of its constituents;

(d Define either of _he fcilowing for each layer:

(i) yield stress in transverse direction and zield

stress in shear;

_ii) yield stress in transverse direction and a table

of values _efinin_ shear stress-strain curve for

the n_trix plus a set of values of stresses to

be used for _ne co_utation of yiel_ s_ress iD

_near:

(e) Specify the type of Ramberg-Osgood relation to be used;

(f) Define the loadimgs; and

(g) Define the control param, eters.

A _uide to the preparation of inv_t data for this vrggra_

is given in s_tion 4 below.

3o Details of Outpu _

The outpu_ can be dlvide_ basically into two steps:

(a) Output of Input Data:

The first section of the output deals with the output

of _he input data. If the input is in _he form of

properties of constituents c£ the layer, it gives

an output of the properties of the constituents first

and then the com_ut_d value of the properties of the

layer; otherwise, it gives output directly the prcp-

erties of the layer.

(b) Output of Stresses and Strains:

For each set of loadinh, the computer prints th_

following:

(I; value of the load applied;

(2) nu._-lber of iterations for convergence;

(3) s%resses for individual laminae with respect

to principal elastic axes of the laminae; and

(4) strains for individual laminae in te.-qr,_ of both

l_inae and laminate axes. 69.
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7_.

Input Details for _gC-NOLIN

[I) Read (IS} NSK_S

:_SETS: n_ber of problem5

,2_ Read (I5) LAY

LAY: number of layers in this laminate ana"/_is

(3} Rea_ (I5_ I_4P

IXP: 0p%ion for reading in material properties

INP = l; read in m_terlal properties of ind:vidual

lami nae ;

IXP = 2; compute properties of laminae fro_ the

properties of constituents.

(4) (a) If INP = 1

(i) Read {5D15.5) Ell,E22,_-12,u21

(ii) Read (5D15.5, _ GI2, SY, FY

(iii) Read (D15.5,I5.% T, IAm_G

(b) Zf INP = 2

(i} Read (4D15.5) EF, MUF, GP, VF

_ii) Rea! (3015.5) EM, MU::, %..

(iii) Read (15_ 12

If i 2 = 0; read in SY and TY

_lj Rca_ (2D15._) SY, .'Y

If ! 2 = I; TY is to be ccmpute_

_i) Read _5,10_2, SYC_

(ii) Read _ 2 I 5) NUMT

NUMT = number of values in the table

[iii} Read (5D15.5) TAU (J), J=l, NUMT
(Table of shear stress values of

matrix read in)

_iv) Read (5D15.5) GA: ._.(J},J=i, NU:_T

(Table of shear strain values of

matrix rea_ in)

(v) Read (5D15.5) SGI2 (J), J=2,11

(Table of shear s_-ress values of

laminae read in)



(I0)

(5) Read (5D15.5) XN, _M

_: exponent in nonlinear transverse stress-
strain law;

_.I: exponent in nonlinear shear stress-strain

law.

(6) Read (5b15.5) SOll, S022, SO12

5Ol1: applied stress in X-directiDn

SO22: applied stress in Y-direction

SO12: shear stress in XY

(7) Read (I5, D15.5) KSGM, S:_IT

KSGM: total nu_er of loading increments

S_T: ratio of load increment to the initial

load.

(S) Read (D15.5) STIFF

STIFF: tangent modulus of stress-strain curve
in terms of the laminate axes; specify

a value of STIFF below which the program

will not run.

Read (D15.5) SGR

SGR: maximum allowable stress in the fiber in

tensio_ or co.._pression

(9) Read (I 5, 2D15.5) IT, EP5, UPBD

IT: maximum number of iteration permitted in

Newton-Raphson analysis

EPS: convergence criteria; (ratio of values of

two successive iterations should be less

than EPS)

UPBD: divergence criteria (solution will stop
if ratio of two succcssive iteratlons is

greater than 1_I12)

ReadflS) INM _

If INMT = i, the program uses ratio of previous

tws solutions as the initial guess

value iteration process;

If INMT = 2, the program uses extrapolated value

of previous two solutions proportioned

on the basis of stress ratio as _c

initial guess.
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"l'h¢ ,m,o_Aaicd and spac_ dctir_ti_, r,f the United St_t_s sbdl be
¢c_luct_d _o a_ to contribute . . . to the expansion ,J.thxman k_u_'l-
dge _[ phe_mena i*: the almo_phere and _pace The Admiaiu_alion
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_XA'IrlOKAL AIr.RONAL'71C$ AND SPACF A('T OF 1958

NASA SCIENTIFIC AND TECttNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and

technical information considered important.

complete, and a hsting ontribution to existing

knowledge.

TECHNICAL NOTES: Information Iess broa_

in scope bur nevereheless of importance as a
contribution to exitaing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution

because of preliminary data, security classifica-
tion, or ocher reasons. Also includes conference

proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and

technical information generated under a NASA

cor,tta£t or grant and considered an important

contribution to existing knowledge.

TI/CHNICAL TRANSLATIONS: Information

p_blished Zn a foreign language considered

to meri,_ NASA dis, ribution in English.

SPECIA/- PL'BL,CATIONS: Information

derived from or of value :o NASA activities.

Publications i_'.lude final reports of ma,_or

pmiecrs, moncgraphs, data compihtions,

landbooks, soarcel:x_oks, and special

bibliographies.

TECHNOLOGY UTILIZATION

PUBUCATIONS: l_o_maOon on technology

used by NASA that may be of particular

interest in commercial aaJ other, non.aerospace

afplications. Publications include Tech Briefs,

Tec.aologyU:il/zationRepom and

TechnoJ_,_;_,"Surveys.

Details on the uvoilabJlify of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE AD.q!!NISTRATION

Washington, D.C. 20546




